Design and simulation of dual short pulse transmission structure
-
摘要: 基于单台脉冲功率驱动源同时驱动两个微波器件产生双频高功率微波的构想,设计了一种双路短脉冲输出结构,其接于主开关后,能够将主开关产生的高压纳秒脉冲传输至高功率微波产生器。两路脉冲由同一脉冲源产生,具有很好的一致性。对双路输出结构脉冲传输过程进行了建模仿真,研究了传输线阻抗、输入脉冲前沿等电学参数对输出波形质量的影响规律,并完成了绝缘风险分析及结构优化。经评估,在前沿4~8 ns的准方波输入脉冲下,双路脉冲输出线的输出波形质量与单路传输线相当,其过冲振荡均小于20%、平顶振荡均小于1%,且能满足绝缘要求。Abstract: The scheme of a dual short pulse output structure is proposed, according to the concept that two microwave device driven by the same pulsed accelerator can produced stable dual-frequency high power microwave (HPM) simultaneously. Structure model of a dual short pulse output structure is designed, which is connected to the main switch and can transmit the high voltage nanosecond pulse generated by the switch to the HPM generator. The two-channel pulse is produced by the same pulse source and has good consistency. In this paper, the pulse transmission process of the dual short pulse transmission structure is modeled and simulated, and the influence of electrical parameters such as transmission line impedance and input pulse front on output waveform quality is studied. The risk analysis about insulation and structural optimization are completed. It is estimated that the output pulse quality of the simultaneous output line is equal to that of the single transmission line under 4−8 ns quasi-square wave input pulse, and the overshoot oscillation is less than 20%, the flat top oscillation is less than 1%, and it can meet the insulation requirement.
-
表 1 两路负载稳定阻值不一致对输出波形影响
Table 1. Influence of inconsistent two-way load resistances on output waveforms
port 1
resistance/Ωport 2
resistance/Ωoutput
resistance/Ωport 1
overshot/%port 2
overshot/%output
voltage/V80 60 34.28 25.83 15.48 0.876 80 70 37.33 20.46 16.15 0.919 80 80 40.00 16.10 16.31 0.952 80 90 42.35 13.47 18.06 0.979 80 100 44.44 10.47 19.27 1.003 表 2 两路输出线绝缘风险点电场及其设计标准
Table 2. Electric field and design standard of dual short pulse transmission structure’s insulation point
-
[1] 彭建昌, 苏建仓, 宋晓欣, 等. 40 GW重复频率脉冲驱动源研制进展[J]. 强激光与粒子束, 2010, 22(4):712-716 doi: 10.3788/HPLPB20102204.0712Peng Jianchang, Su Jiancang, Song Xiaoxin, et al. Progress on a 40 GW repetitive pulsed accelerator[J]. High Power Laser and Particle Beams, 2010, 22(4): 712-716 doi: 10.3788/HPLPB20102204.0712 [2] 刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005 [3] 曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003Zeng Zhengzhong. An introduction to applied high power pulse technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003 [4] 李锐, 张喜波, 苏建仓, 等. 基于TPG2000的三路输出线理论设计与仿真[J]. 强激光与粒子束, 2012, 24(3):576-580 doi: 10.3788/HPLPB20122403.0576Li Rui, Zhang Xibo, Su Jiancang, et al. Theoretical design and simulation of three transmission lines based on TPG 2000[J]. High Power Laser and Particle Beams, 2012, 24(3): 576-580 doi: 10.3788/HPLPB20122403.0576 [5] 王朋, 罗敏, 康强, 等. 紧凑型脉冲功率驱动源设计与实验研究[J]. 强激光与粒子束, 2018, 30:025005 doi: 10.11884/HPLPB201830.170358Wang Peng, Luo Min, Kang Qiang, et al. Design and experimental study of compact pulse power driver[J]. High Power Laser and Particle Beams, 2018, 30: 025005 doi: 10.11884/HPLPB201830.170358 [6] 彭建昌, 苏建仓, 张喜波, 等. 20GW/100Hz脉冲功率源研制[J]. 强激光与粒子束, 2011, 23(11):2919-2924 doi: 10.3788/HPLPB20112311.2919Peng Jianchang, Su Jiancang, Zhang Xibo, et al. Development of 20GW/100Hz repetitive pulsed accelerator[J]. High Power Laser and Particle Beams, 2011, 23(11): 2919-2924 doi: 10.3788/HPLPB20112311.2919 [7] 宋刚永, 蒙林, 于新华, 等. 双频相对论返波振荡器的数值模拟[J]. 强激光与粒子束, 2009, 21(1):103-107Song Gangyong, Meng Lin, Yu Xinhua, et al. Numerical simulation of dual-frequency relativistic backward wave oscillator[J]. High Power Laser and Particle Beams, 2009, 21(1): 103-107 [8] 宋玮, 黄文华, 李佳伟, 等. 高功率微波合成技术进展[J]. 现代应用物理, 2014, 5(1):12-20 doi: 10.3969/j.issn.2095-6223.2014.01.002Song Wei, Huang Wenhua, Li Jiawei, et al. Development of the high power microwave combination technology[J]. Modern Applied Physics, 2014, 5(1): 12-20 doi: 10.3969/j.issn.2095-6223.2014.01.002 [9] 徐秀栋, 李锐, 曾搏, 等. 脉冲同轴输出装置双锥支撑结构的设计与分析[J]. 现代应用物理, 2021, 12:021001Xu Xiudong, Li Rui, Zeng Bo, et al. Structural design and analysis of cone-shaped brace for pulse coaxial output device[J]. Modern Applied Physics, 2021, 12: 021001 [10] 苏兆锋, 杨海亮, 张鹏飞, 等. 脉冲电场下两种电极材料表面电子发射阈值特性的实验研究[J]. 物理学报, 2014, 63:106801 doi: 10.7498/aps.63.106801Su Zhaofeng, Yang Hailiang, Zhang Pengfei, et al. Preliminary experimental research of electron emission characteristics on surface area of two kinds of electrodes[J]. Acta Physica Sinica, 2014, 63: 106801 doi: 10.7498/aps.63.106801 [11] 黎斌. SF6高压电器设计[M]. 5版. 北京: 机械工业出版社, 2019Li Bin. SF6 high voltage electrical design[M]. 5th ed. Beijing: China Machine Press, 2019 [12] 严璋, 朱德恒. 高电压绝缘技术[M]. 3版. 北京: 中国电力出版社, 2015Yan Zhang, Zhu Deheng. High voltage insulation technology[M]. 3rd ed. Beijing: China Electric Power Press, 2015 [13] 郑殿春. SF6介电特性及应用[M]. 北京: 科学出版社, 2019Zheng Dianchun. The dielectric characteristics and application of SF6[M]. Beijing: Science Press, 2019 [14] Martin T H, Guenther A H, Kristiansen M. J. C. Martin on pulsed power[M]. New York: Plenum Press, 1996. [15] 高巍. 高压纳秒脉冲下真空绝缘沿面闪络特性研究[D]. 北京: 中国科学院电工研究所, 2005Gao Wei. Study on flash-over characteristics of vacuum insulation along surface with high pressure nanoseconds[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2005 [16] 邵涛. 重复频率纳秒脉冲气体击穿研究[D]. 北京: 中国科学院电工研究所, 2006Shao Tao. Study on repetitive nanosecond-pulse breakdown in gases[D]. Beijing: Institute of Electrical Engineering of the Chinese Academy of Sciences, 2006