留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光相控阵相干合成技术研究进展

刘家盈 李自强 杨然 邹凡 杨旭 周鑫 潘姿廷 潘丽康 李雨婷 姜佳丽 李枫 耿超 李新阳

刘家盈, 李自强, 杨然, 等. 光纤激光相控阵相干合成技术研究进展[J]. 强激光与粒子束, 2023, 35: 041003. doi: 10.11884/HPLPB202335.220323
引用本文: 刘家盈, 李自强, 杨然, 等. 光纤激光相控阵相干合成技术研究进展[J]. 强激光与粒子束, 2023, 35: 041003. doi: 10.11884/HPLPB202335.220323
Liu Jiaying, Li Ziqiang, Yang Ran, et al. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041003. doi: 10.11884/HPLPB202335.220323
Citation: Liu Jiaying, Li Ziqiang, Yang Ran, et al. Research progress of coherent beam combining technique of phased fiber laser array[J]. High Power Laser and Particle Beams, 2023, 35: 041003. doi: 10.11884/HPLPB202335.220323

光纤激光相控阵相干合成技术研究进展

doi: 10.11884/HPLPB202335.220323
基金项目: 国家自然科学基金项目(U2141255, 62175241, 62005286); 四川省杰出青年科学基金项目(2022JDJQ0042)
详细信息
    作者简介:

    刘家盈,liu_jiaying@outlook.com

    李自强,lzq_ioe@163.com

    通讯作者:

    耿 超,blast_4006@126.com

  • 中图分类号: TN248.1

Research progress of coherent beam combining technique of phased fiber laser array

  • 摘要: 主要介绍了近年来光纤激光相控阵相干合成技术的发展现状,总结了中国科学院光电技术研究所在这方面的最新研究成果,包括基于振幅调制的光纤激光相控阵相干合成能力优化、光纤激光相控阵实现收发一体相干合成、光纤激光相控阵的目标在回路相干合成、光纤激光相控阵在大气湍流下实现耦合接收光束的共相合束、基于多孔径波前探测的相干合成方法、基于自适应光纤准直器和微透镜阵列的光束大角度高精度连续寻址扫描等。以上研究工作将促进光纤激光相控阵技术朝向更多单元、更高功率、更远距离等方向演进,并推动其与激光大气传输、空间激光通信、自适应光学等理论和应用的结合与发展。
  • 图  1  19单元光纤激光相控阵的六边形发射阵列平面的示意图和实物照片

    Figure  1.  Schematic diagram and real picture of the emissive hexagon array plane of a 19-element PFLA

    图  2  不同截断比Tr下,19路高斯子光束的远场合成光束性能指标特性的仿真结果

    Figure  2.  Simulation results of combined beam’s metrics characteristics of 19 Gaussian beamlets in the far-field with different Tr

    图  3  不同截断比Tr下,19路高斯子光束的远场合成光束性能指标特性的实验结果

    Figure  3.  Experimental results of combined beam’s metrics characteristics of 19 Gaussian beamlets in the far-field with different Tr

    图  4  19单元光纤激光相控阵的双向传输相干合成方案

    Figure  4.  Bidirectional CBC scheme based on 19-element PFLA

    图  5  AFOC阵列耦合接收光强的归一化曲线

    Figure  5.  Curves of normalized optical intensity coupled by the AFOC array

    图  6  闭环控制过程中不同阶段的远场衍射光斑长曝光(帧平均)图样

    Figure  6.  Long exposure patterns in far field (frame averaged) at different stages in the closed loop control processes

    图  7  2 km湍流条件下19单元光纤激光相控阵相干合成与指向的实验装置与原理框图

    Figure  7.  Experimental setup and block diagram for CBC and pointing of a 19-element PFLA under 2 km turbulence conditions

    图  8  不同湍流强度下,合成光束的反射回光性能指标在SPGD算法开环OP、仅锁相PL、锁相加倾斜控制PLTT三个阶段的变化情况

    Figure  8.  Variation of the reflected optical intensity metircs of the combined beam under different turbulence intensities at the stages of OP, PL, PLTT of SPGD algorithm

    图  9  57单元光纤激光相控阵2.1 km传输的相干合成与指向实验原理及实物装置图

    Figure  9.  Experimental principle and real device diagram of CBC and pointing of 57-element PFLA in 2.1 km transmission

    图  10  闭环控制中不同阶段的目标回光性能指标曲线

    Figure  10.  Metric curve of back-reflected signals from the target of different stages in the closed-loop control process

    图  11  闭环控制中不同阶段目标屏上的长曝光图样

    Figure  11.  Long exposure patterns on the target of different stages in the closed-loop control process

    图  12  2.1 km水平湍流下的19单元光纤激光相控阵的相干合成接收系统图

    Figure  12.  CBC Receiving system diagram of a 19-element PFLA array within 2.1 km horizontal turbulence

    图  13  2.1 km水平湍流环境下19单元相干合成接收的性能指标特性

    Figure  13.  Metrics characteristics of 19-element CBC receiving in 2.1 km horizontal turbulence

    图  14  基于AFOC阵列的波前传感器的示意图

    Figure  14.  Scheme of the wavefront sensor based on AFOC array

    图  15  像差复原结果

    Figure  15.  Wavefront recovery results

    图  16  基于主动波前测量和外部像差预补偿的光纤激光相控阵实验装置图

    Figure  16.  Experimental setup of PFLA based on active wavefront measurement and external aberration pre-compensation

    PMs: Phase compensators

    图  17  预补偿过程中不同控制阶段的远场光斑分布

    Figure  17.  Far-field spot distribution at different stages of the pre-compensation process

    图  18  光束连续扫描系统的光路排布示意图

    Figure  18.  Schematic diagram of the optical arrangement of the continuous beam scanning system

    图  19  基于AFOC和MLAS的连续寻址扫描原理图

    Figure  19.  Principle of continuous scanning based on AFOC and MLAS

    图  20  AFOC和MLAS两级调控的光束扫描结构实现图

    Figure  20.  Experimental structure of beam scanning with two-stage modulation of AFOC and MLAS

    图  21  仅MLAS、以及AFOC+MLAS的线形扫描的长曝光图样

    Figure  21.  Long-exposure pictures of the linear scanning of MLAS alone and AFOC+MLAS

  • [1] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688. doi: 10.1364/OL.36.002686
    [2] Ma Yanxing, Wang Xiaolin, Leng Jinyong, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics Letters, 2011, 36(6): 951-953. doi: 10.1364/OL.36.000951
    [3] Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266. doi: 10.1364/OE.16.013240
    [4] Vorontsov M A, Weyrauch T, Beresnev L A, et al. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 269-280. doi: 10.1109/JSTQE.2008.2010875
    [5] Zhou Pu, Liu Zejin, Xu Xiaojun, et al. Comparative study on the propagation performance of coherently combined and incoherently combined beams[J]. Optics Communications, 2009, 282(8): 1640-1647. doi: 10.1016/j.optcom.2009.01.011
    [6] Becker N C, Hädrich S, Eidam T, et al. Adaptive pre-amplification pulse shaping in a high-power, coherently combined fiber laser system[J]. Optics Letters, 2017, 42(19): 3916-3919. doi: 10.1364/OL.42.003916
    [7] 刘泽金, 王红岩, 许晓军. 高能半导体泵浦气体激光器[J]. 中国激光, 2021, 48:0401001 doi: 10.3788/CJL202148.0401001

    Liu Zejin, Wang Hongyan, Xu Xiaojun. High energy diode pumped gas laser[J]. Chinese Journal of Lasers, 2021, 48: 0401001 doi: 10.3788/CJL202148.0401001
    [8] Chang Hongxiang, Chang Qi, Xi Jiachao, et al. First experimental demonstration of coherent beam combining of more than 100 beams[J]. Photonics Research, 2020, 8(12): 1943-1948. doi: 10.1364/PRJ.409788
    [9] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 2016, 41(4): 840-843. doi: 10.1364/OL.41.000840
    [10] Rouzé B, Lombard L, Jacqmin H, et al. Coherent beam combination of seven 1.5 µm fiber amplifiers through up to 1 km atmospheric turbulence: near- and far-field experimental analysis[J]. Applied Optics, 2021, 60(27): 8524-8533. doi: 10.1364/AO.433872
    [11] Han Ronglei, Sun Jianfeng, Hou Peipei, et al. Multi-dimensional and large-sized optical phased array for space laser communication[J]. Optics Express, 2022, 30(4): 5026-5037. doi: 10.1364/OE.447351
    [12] Ma Jing, Li Kangning, Tan Liying, et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Applied Optics, 2015, 54(25): 7575-7585. doi: 10.1364/AO.54.007575
    [13] Geisler D J, Yarnall T M, Stevens M L, et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 2016, 24(12): 12661-12671. doi: 10.1364/OE.24.012661
    [14] Yuan Renzhi, Cheng Julian. Free-space optical quantum communications in turbulent channels with receiver diversity[J]. IEEE Transactions on Communications, 2020, 68(9): 5706-5717. doi: 10.1109/TCOMM.2020.2997398
    [15] Wang Hanbin, He Bing, Yang Yifeng, et al. Beam quality improvement of coherent beam combining by gradient power distribution hexagonal tiled-aperture large laser array[J]. Optical Engineering, 2019, 58: 066105.
    [16] Zuo Jing, Li Feng, Geng Chao, et al. Experimental demonstration of central-lobe energy enhancement based on amplitude modulation of beamlets in 19 elements fiber laser phased array[J]. IEEE Photonics Journal, 2021, 13: 1500113.
    [17] Geng Chao, Li Feng, Zuo Jing, et al. Fiber laser transceiving and wavefront aberration mitigation with adaptive distributed aperture array for free-space optical communications[J]. Optics Letters, 2020, 45(7): 1906-1909. doi: 10.1364/OL.383093
    [18] Yang Yan, Geng Chao, Li Feng, et al. Combining module based on coherent polarization beam combining[J]. Applied Optics, 2017, 56(7): 2020-2028. doi: 10.1364/AO.56.002020
    [19] Yang Yan, Geng Chao, Li Feng, et al. Fiber-based coherent polarization beam combining with cascaded phase-locking and polarization-transforming controls[J]. Journal of Optics, 2018, 20: 055703. doi: 10.1088/2040-8986/aaba2b
    [20] Lao Chenzhe, Sun Jianfeng, Lu Zhiyong, et al. Multi-aperture fiber coherent combining system in urban horizontal atmospheric laser link[J]. Optics Communications, 2020, 466: 125172. doi: 10.1016/j.optcom.2019.125172
    [21] Huang Guan, Geng Chao, Li Feng, et al. Control bandwidth promotion of adaptive fiber-optics collimator and its application in coherent beam combination[J]. IEEE Photonics Journal, 2018, 10: 7105513.
    [22] Huang Guan, Geng Chao, Li Feng, et al. Adaptive SMF coupling based on precise-delayed SPGD algorithm and its application in free space optical communication[J]. IEEE Photonics Journal, 2018, 10: 7904212.
    [23] Zou Fan, Zuo Jing, Geng Chao, et al. Adaptive laser aiming through 2 km horizontal atmosphere with precise-delayed SPGD algorithm[J]. Journal of Russian Laser Research, 2021, 42(4): 462-467. doi: 10.1007/s10946-021-09983-0
    [24] Vorontsov M A, Kolosov V V, Polnau E. Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation[J]. Applied Optics, 2009, 48(1): A13-A29. doi: 10.1364/AO.48.000A13
    [25] 耿超, 李枫, 黄冠, 等. 基于光纤自适应操控的激光相控阵技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47:0103003 doi: 10.3788/IRLA201847.0103003

    Geng Chao, Li Feng, Huang Guan, et al. Research progress of laser phased array technique based on fiber adaptive manipulation (Invited)[J]. Infrared and Laser Engineering, 2018, 47: 0103003 doi: 10.3788/IRLA201847.0103003
    [26] 支冬, 马阎星, 马鹏飞, 等. 公里级湍流大气环境下光纤激光高效相干合成[J]. 红外与激光工程, 2019, 48:1005007 doi: 10.3788/IRLA201948.1005007

    Zhi Dong, Ma Yanxing, Ma Pengfei, et al. Efficient coherent beam combining of fiber laser array through km-scale turbulent atmosphere[J]. Infrared and Laser Engineering, 2019, 48: 1005007 doi: 10.3788/IRLA201948.1005007
    [27] 李枫, 左竞, 黄冠, 等. 19孔径光纤阵列激光经2 km湍流传输实现目标在回路的相干合成[J]. 中国激光, 2021, 48:0316002 doi: 10.3788/CJL202148.0316002

    Li Feng, Zuo Jing, Huang Guan, et al. Target-in-loop coherent beam combining of a 19-aperture fiber laser array over 2 km in atmosphere[J]. Chinese Journal of Lasers, 2021, 48: 0316002 doi: 10.3788/CJL202148.0316002
    [28] Zuo Jing, Zou Fan, Zhou Xin, et al. Coherent combining of a large-scale fiber laser array over 2.1 km in turbulence based on a beam conformal projection system[J]. Optics Letters, 2022, 47(2): 365-368. doi: 10.1364/OL.446722
    [29] 李枫, 邹凡, 姜佳丽, 等. 57孔径光纤激光相控阵自适应光学系统实现经2 km大气传输的目标在回路相干合成[J]. 中国激光, 2022, 49:0616002

    Li Feng, Zou Fan, Jiang Jiali, et al. Target-in-loop coherent beam combining of a 57-aperture fiber laser array over 2 km in atmosphere based on a adaptive optical system[J]. Chinese Journal of Lasers, 2022, 49: 0616002
    [30] Li Feng, Geng Chao, Li Xinyang, et al. Co-aperture transceiving of two combined beams based on adaptive fiber coupling control[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1787-1790. doi: 10.1109/LPT.2015.2438172
    [31] Li Feng, Geng Chao, Huang Guan, et al. Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling[J]. IEEE Photonics Journal, 2017, 9: 7102812.
    [32] 李枫, 耿超, 李新阳, 等. 基于光纤耦合器的全光纤链路锁相控制[J]. 光电工程, 2017, 44(6):602-609

    Li Feng, Geng Chao, Li Xinyang, et al. Phase-locking control in all fiber link based on fiber coupler[J]. Opto-Electronic Engineering, 2017, 44(6): 602-609
    [33] Wang Xiaolin, Zhou Pu, Ma Yanxing, et al. Active phasing a nine-element 1.14 kW all-fiber two-tone MOPA array using SPGD algorithm[J]. Optics Letters, 2011, 36(16): 3121-3123. doi: 10.1364/OL.36.003121
    [34] Vorontsov M A, Sivokon V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi: 10.1364/JOSAA.15.002745
    [35] 李枫, 耿超, 黄冠, 等. 基于光纤耦合的光纤激光阵列像差探测[J]. 光电工程, 2018, 45:170691

    Li Feng, Geng Chao, Huang Guan, et al. Wavefront sensing based on fiber coupling of the fiber laser array[J]. Opto-Electronic Engineering, 2018, 45: 170691
    [36] 马阎星, 吴坚, 粟荣涛, 等. 光学相控阵技术发展概述[J]. 红外与激光工程, 2020, 49:20201042

    Ma Yanxing, Wu Jian, Su Rongtao, et al. Review of optical phased array techniques[J]. Infrared and Laser Engineering, 2020, 49: 20201042
    [37] Li Anhu, Liu Xingsheng, Sun Wansong. Forward and inverse solutions for three-element Risley prism beam scanners[J]. Optics Express, 2017, 25(7): 7677-7688. doi: 10.1364/OE.25.007677
    [38] Li Anhu, Jiang Xuchun, Sun Jianfeng, et al. Laser coarse–fine coupling scanning method by steering double prisms[J]. Applied Optics, 2012, 51(3): 356-364. doi: 10.1364/AO.51.000356
    [39] Gokce S K, Holmstrom S, Hibert C, et al. Two-dimensional MEMS stage integrated with microlens arrays for laser beam steering[J]. Journal of Microelectromechanical Systems, 2011, 20(1): 15-17. doi: 10.1109/JMEMS.2010.2090507
    [40] Abiri B, Aflatouni F, Rekhi A, et al. Electronic two-dimensional beam steering for integrated optical phased arrays[C]//OFC 2014. 2014: 1-3.
    [41] Watson E A, Whitaker W E, Brewer C D, et al. Implementing optical phased array beam steering with cascaded microlens arrays[C]//Proceedings IEEE Aerospace Conference. 2002: 3.
    [42] Goltsos W C, Holz M. Agile beam steering using binary optics microlens arrays[J]. Optical Engineering, 1990, 29(11): 1392-1397. doi: 10.1117/12.55743
    [43] 黄鹰, 向思桦, 陈四海, 等. 微型光扫描器研究[J]. 红外与毫米波学报, 2007, 26(1):26-29

    Huang Ying, Xiang Sihua, Chen Sihai, et al. Study on microoptical scanner[J]. Journal of Infrared and Millimeter Waves, 2007, 26(1): 26-29
    [44] 谢洪波, 王瑶, 毛晨盛, 等. 一种可实现收发一体连续扫描的微透镜阵列[J]. 应用光学, 2018, 39(5):613-618

    Xie Hongbo, Wang Yao, Mao Chensheng, et al. Micro-lens array for integrative transmitting and receiving continuous scanning[J]. Journal of Applied Optics, 2018, 39(5): 613-618
    [45] Yang Xu, Geng Chao, Li Feng, et al. High-resolution beam scanning technique with microlens array and adaptive fiber-optics collimator[J]. Optics Express, 2021, 29(1): 359-367. doi: 10.1364/OE.412272
    [46] Yang Xu, Huang Guan, Li Feng, et al. Continuous tracking and pointing of coherent beam combining system via target-in-the-loop concept[J]. IEEE Photonics Technology Letters, 2021, 33(20): 1119-1122. doi: 10.1109/LPT.2021.3108419
  • 加载中
图(21)
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  504
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-23
  • 修回日期:  2023-02-13
  • 录用日期:  2023-02-15
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-03-30

目录

    /

    返回文章
    返回