留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单元件干涉数字全息的光线追迹模型

解翔宇 王鹏 邓颖 周凯南 冯国英

解翔宇, 王鹏, 邓颖, 等. 单元件干涉数字全息的光线追迹模型[J]. 强激光与粒子束, 2023, 35: 059002. doi: 10.11884/HPLPB202335.220396
引用本文: 解翔宇, 王鹏, 邓颖, 等. 单元件干涉数字全息的光线追迹模型[J]. 强激光与粒子束, 2023, 35: 059002. doi: 10.11884/HPLPB202335.220396
Xie Xiangyu, Wang Peng, Deng Ying, et al. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35: 059002. doi: 10.11884/HPLPB202335.220396
Citation: Xie Xiangyu, Wang Peng, Deng Ying, et al. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35: 059002. doi: 10.11884/HPLPB202335.220396

单元件干涉数字全息的光线追迹模型

doi: 10.11884/HPLPB202335.220396
基金项目: 国家重点研发计划项目 ( 2022YFB3606304);国家自然科学基金项目 (U2230129)
详细信息
    作者简介:

    解翔宇,xiexiangyu@stu.scu.edu.cn

    通讯作者:

    冯国英, guoing_feng@scu.edu.cn

  • 中图分类号: TB87.1

Ray tracing model of digital holography with single element interference

  • 摘要: 基于棱镜对的单元件干涉可以获得透射物体的相位信息,即数字全息,具有结构紧凑、干涉条纹稳定、测量精度高等优点。采用光线追迹方法,综合考虑了棱镜对的方位角旋转、斜面偏心等参数,建立了光线追迹等效模型,仿真了数字全息干涉条纹,给出了条纹密度变化及倾斜的解析表达式。针对单模和多模光纤等微结构光学元件,获得了干涉数字全息图,并反演出其折射率分布。搭建了显微成像单元件干涉实验装置,获得了实际测量干涉图样,实验与仿真结果一致,证明了本模型的有效性。
  • 图  1  单元件干涉仪工作原理分析

    Figure  1.  Working principle analysis of single-unit interferometer

    图  2  干涉元件分析图

    Figure  2.  Analysis diagram of interference element

    图  3  干涉元件旋转角度 $\theta $ -条纹宽度 $w$ 函数曲线,及 $\theta $ 分别为0.02°、0.05°及0.10°时的干涉条纹及光强拟合曲线

    Figure  3.  Function curve of interference element rotation angle $\theta $ - fringe width $w$ , and interference fringe and light intensity fitting curve at $\theta $ is 0.02°, 0.05° and 0.10° respectively

    图  4  实验及仿真中因干涉元件偏心误差导致的对称倾斜条纹图像

    Figure  4.  Symmetrical oblique fringe images caused by interference element eccentricity error in experiment and simulation

    图  5  光纤数字全息光路模型及实验装置示意图

    Figure  5.  Schematic diagram of optical fiber digital holographic optical path model and experimental device

    图  6  不同折射率匹配液条件下,单模光纤及多模光纤的光线追迹数字全息图及折射率分布三维重建

    Figure  6.  Under different refractive index matching liquid conditions, the ray tracing digital hologram and 3D-reconstruction of refractive index distribution of single-mode fiber and multimode fiber

    图  7  待测单模光纤和多模光纤的显微剖面图、干涉条纹图及折射率重建图

    Figure  7.  Micrograph, interference fringe pattern and refraction index reconstruction of SMF and MMF to be measured

  • [1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. doi: 10.1126/science.1957169
    [2] Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1/2): 43-48.
    [3] 孙伟文, 王帅军, 刘凯. 用于实时三维成像的双频结构光编解码方法[J]. 强激光与粒子束, 2017, 29:091009 doi: 10.11884/HPLPB201729.170063

    Sun Weiwen, Wang Shuaijun, Liu Kai. Dual-frequency structured light coding and decoding method for real-time three-dimension reconstruction[J]. High Power Laser and Particle Beams, 2017, 29: 091009 doi: 10.11884/HPLPB201729.170063
    [4] 吴宇际, 张青, 王峰, 等. 广角任意反射面速度干涉仪虚像性质[J]. 强激光与粒子束, 2022, 34:112003 doi: 10.11884/HPLPB202234.220226

    Wu Yuji, Zhang Qing, Wang Feng, et al. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 112003 doi: 10.11884/HPLPB202234.220226
    [5] 孙良伟, 罗箐. 同步辐射束流尺寸测量干涉仪的设计与仿真[J]. 强激光与粒子束, 2021, 33:084002 doi: 10.11884/HPLPB202133.210236

    Sun Liangwei, Luo Qing. Design and simulation of interferometer for synchrotron radiation beam size measurement[J]. High Power Laser and Particle Beams, 2021, 33: 084002 doi: 10.11884/HPLPB202133.210236
    [6] Ferrari J A, Frins E M. Single-element interferometer[J]. Optics Communications, 2007, 279(2): 235-239. doi: 10.1016/j.optcom.2007.07.038
    [7] 宋哲义, 冯国英, 张涛. 不同浓度不同温度下葡萄糖溶液折射率的精确测量[J]. 中国激光, 2014, 41:1208008 doi: 10.3788/CJL201441.1208008

    Song Zheyi, Feng Guoying, Zhang Tao. Accurate measurement of the refractive index D-glucose solution at various concentrations at different temperatures[J]. Chinese Journal of Lasers, 2014, 41: 1208008 doi: 10.3788/CJL201441.1208008
    [8] Zhang T, Feng G Y, Song Z Y, et al. A single-element interferometer for measuring refractive index of transparent liquids[J]. Optics Communications, 2014, 332: 14-17. doi: 10.1016/j.optcom.2014.06.028
    [9] Wang C, Xie X Y, Zhang H, et al. Single-element real-time interferometric system for measuring dynamic temperature field of liquid medium[J]. AIP Advances, 2022, 12: 045010. doi: 10.1063/5.0087196
    [10] 兰斌, 冯国英, 张涛, 等. 用于透明平板平行度和均匀性测量的单元件干涉仪[J]. 物理学报, 2017, 66:069501 doi: 10.7498/aps.66.069501

    Lan Bin, Feng Guoying, Zhang Tao, et al. A single-element interferometer for measuring parallelism and uniformity of transparent plate[J]. Acta Physica Sinica, 2017, 66: 069501 doi: 10.7498/aps.66.069501
    [11] Sánchez J R, Martínez-García A, Rayas J A, et al. LED source interferometer for microscopic fringe projection profilometry using a Gates’ interferometer configuration[J]. Optics and Lasers in Engineering, 2022, 149: 106822. doi: 10.1016/j.optlaseng.2021.106822
    [12] Rayas J A, León-Rodríguez M, Martínez-García A, et al. Using a single-cube beam-splitter as a fringe pattern generator within a structured-light projection system for surface metrology[J]. Optical Engineering, 2017, 56: 044103. doi: 10.1117/1.OE.56.4.044103
    [13] Riobó L M, Veiras F E, Garea M T, et al. Software-defined optoelectronics: space and frequency diversity in heterodyne interferometry[J]. IEEE Sensors Journal, 2018, 18(14): 5753-5760. doi: 10.1109/JSEN.2018.2842143
    [14] Hass K, Insabella R M, González M G, et al. A method for the calibration of wideband ultrasonic sensors for optoacoustics[J]. Review of Scientific Instruments, 2021, 92: 064904. doi: 10.1063/5.0041613
    [15] Picazo-Bueno J A, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube[J]. Optics Express, 2019, 27(4): 5655-5669. doi: 10.1364/OE.27.005655
    [16] 王驰, 解翔宇, 邓颖, 等. 基于单元件干涉仪的计算机断层扫描重建光纤三维折射率分布[J]. 强激光与粒子束, 2022, 34:041006 doi: 10.11884/HPLPB202234.220035

    Wang Chi, Xie Xiangyu, Deng Ying, et al. Three-dimensional refractive index reconstruction of optical fibers based on single-element interferometer computed tomography[J]. High Power Laser and Particle Beams, 2022, 34: 041006 doi: 10.11884/HPLPB202234.220035
    [17] 罗文全, 冯国英, 杜永兆. 基于分光棱镜干涉法测量透明液体折射率[J]. 中国激光, 2013, 40:0508005 doi: 10.3788/CJL201340.0508005

    Luo Wenquan, Feng Guoying, Du Yongzhao. Refraction index measurement of transparent liquid by single-element interferometer[J]. Chinese Journal of Lasers, 2013, 40: 0508005 doi: 10.3788/CJL201340.0508005
    [18] Zhang H Z, Jiang Q. Highly sensitive air pressure sensor based on Fabry-Perot interference[J]. IEEE Sensors Journal, 2022, 22(7): 6637-6643. doi: 10.1109/JSEN.2022.3152045
    [19] Demeter-Finzi A, Ruschin S. Double resonant vertically accessed optical waveguide sensor[J]. IEEE Sensors Journal, 2021, 21(2): 1478-1484. doi: 10.1109/JSEN.2020.3018231
  • 加载中
图(7)
计量
  • 文章访问数:  596
  • HTML全文浏览量:  222
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2023-03-02
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回