留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

355 nm和1064 nm激光辐照下DKDP晶体的表面损伤特性

史晋芳 邱荣 郭德成 周磊 蒋勇 周强 余健 陈元攀 谢准

史晋芳, 邱荣, 郭德成, 等. 355 nm和1064 nm激光辐照下DKDP晶体的表面损伤特性[J]. 强激光与粒子束, 2023, 35: 071003. doi: 10.11884/HPLPB202335.220419
引用本文: 史晋芳, 邱荣, 郭德成, 等. 355 nm和1064 nm激光辐照下DKDP晶体的表面损伤特性[J]. 强激光与粒子束, 2023, 35: 071003. doi: 10.11884/HPLPB202335.220419
Shi Jinfang, Qiu Rong, Guo Decheng, et al. Investigating surface damage characteristics in DKDP crystals by laser irradiation at 355 nm and 1064 nm[J]. High Power Laser and Particle Beams, 2023, 35: 071003. doi: 10.11884/HPLPB202335.220419
Citation: Shi Jinfang, Qiu Rong, Guo Decheng, et al. Investigating surface damage characteristics in DKDP crystals by laser irradiation at 355 nm and 1064 nm[J]. High Power Laser and Particle Beams, 2023, 35: 071003. doi: 10.11884/HPLPB202335.220419

355 nm和1064 nm激光辐照下DKDP晶体的表面损伤特性

doi: 10.11884/HPLPB202335.220419
基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金项目 (U1530109);国家自然科学基金项目 (11972313)
详细信息
    作者简介:

    史晋芳,603071939@qq.com

    通讯作者:

    邱 荣,43951700@qq.com

  • 中图分类号: TP244

Investigating surface damage characteristics in DKDP crystals by laser irradiation at 355 nm and 1064 nm

  • 摘要: 利用Nd:YAG激光器研究了DKDP晶体元件在激光辐照下的表面损伤特性,对比研究了355 nm和1064 nm激光辐照下晶体元件的表面损伤形貌,分析了每种损伤形貌对应的前驱体和损伤机制。研究结果表明:相对于体损伤,晶体的表面损伤更加复杂,在脉宽约10 ns、损伤概率小于等于50%的激光能量密度辐照下,DKDP晶体的表面损伤主要有带坑底空腔损伤坑、表面损伤裂纹、平底损伤坑、表面烧蚀四种典型形貌。通过光学显微镜和扫描电子显微镜的成像和分析发现:带坑底空腔损伤坑和表面损伤裂纹的前驱体都是晶体体缺陷,平底损伤坑的前驱体则可能是表面加工裂纹、裂纹内碎屑、表层体缺陷等中的一种或多种,表面烧蚀主要由表面污染和浅表层缺陷形成。与熔石英光学元件一样,表面损伤仍然是晶体元件抗激光辐照损伤的薄弱环节。
  • 图  1  晶体损伤测试实验系统示意图

    Figure  1.  Schematic of laser induced damage experimental system

    图  2  预处理前后DKDP晶体在3ω和1ω辐照下的损伤概率曲线

    Figure  2.  Damage probability curves of DKDP crystals before and after laser conditioning

    图  3  带坑底空腔损伤坑的典型形貌

    Figure  3.  Typical morphology of craters with cavity

    图  4  表面损伤裂纹的典型形貌

    Figure  4.  Typical morphology of surface damage cracks

    图  5  平底损伤坑的典型形貌

    Figure  5.  Typical morphology of craters with flat bottom

    图  6  表面烧蚀的典型形貌

    Figure  6.  Typical morphology of surface ablation

    图  7  表面体缺陷引起的表面损伤

    Figure  7.  Surface damage caused by bulk defect on the surface

    图  8  晶体体内损伤空腔及其周围裂纹

    Figure  8.  Damaged cavities and cracks in the bulk

    图  9  缺陷诱导晶体表面损伤示意图

    Figure  9.  Typical morphology of surface damages induced by defects

    表  1  表面损伤形貌的特征数据

    Table  1.   Characteristic data of surface damage morphology

    depth of damage
    crater/μm
    size of damage
    crater/μm
    probability of
    occurrence/%
    damage precursor
    crater with cavity 15~100 50~300 ~30 crystal bulk defect
    crater with flat bottom 5~50 50~200 ~60 surface cracks and surface defect
    surface damage crack 20~100 50~200 ~5 crystal bulk defect
    surface ablation and others 30~500 ~5 surface contamination and surface defect
    下载: 导出CSV
  • [1] Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [2] 柴向旭, 李富全, 王圣来, 等. 氘含量对DKDP晶体横向受激拉曼散射增益系数的影响[J]. 物理学报, 2015, 64:034213 doi: 10.7498/aps.64.034213

    Chai Xiangxu, Li Fuquan, Wang Shenglai, et al. Influence of deuteration degree on the transverse stimulated Raman scattering gain coefficient of DKDP crystal[J]. Acta Physica Sinica, 2015, 64: 034213 doi: 10.7498/aps.64.034213
    [3] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145. doi: 10.13182/FST15-144
    [4] 刘畅, 巨新, 刘宝安, 等. 大口径DKDP元件的辐照损伤分布特性[J]. 强激光与粒子束, 2021, 33:111013 doi: 10.11884/HPLPB202133.210198

    Liu Chang, Ju Xin, Liu Baoan, et al. Irradiation damage distribution characteristics of DKDP in large-aperture high-energy laser[J]. High Power Laser and Particle Beams, 2021, 33: 111013 doi: 10.11884/HPLPB202133.210198
    [5] 赵元安, 邵建达, 刘晓凤, 等. 光学元件的激光损伤问题[J]. 强激光与粒子束, 2022, 34:011004 doi: 10.11884/HPLPB202234.210331

    Zhao Yuanan, Shao Jianda, Liu Xiaofeng, et al. Tracking and understanding laser damage events in optics[J]. High Power Laser and Particle Beams, 2022, 34: 011004 doi: 10.11884/HPLPB202234.210331
    [6] Huang Jin, Wu Zhiqing, Wang Fengrui, et al. Initial damage and damage growth of KDP crystals induced by 355 nm pulse laser[J]. Crystal Research & Technology, 2018, 53: 1700269.
    [7] 徐子媛, 王岳亮, 赵元安, 等. 不同脉冲宽度355 nm波长激光诱导DKDP晶体损伤特性[J]. 强激光与粒子束, 2019, 31:091004 doi: 10.11884/HPLPB201931.190164

    Xu Ziyuan, Wang Yueliang, Zhao Yuanan, et al. Laser damage behaviors of DKDP crystals dominated by laser pulse duration[J]. High Power Laser and Particle Beams, 2019, 31: 091004 doi: 10.11884/HPLPB201931.190164
    [8] Wang Yueliang, Zhao Yuanan, Xie Xiaoyi, et al. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores[J]. Optics Letters, 2016, 41(7): 1534-1537. doi: 10.1364/OL.41.001534
    [9] Cheng Jian, Wang Janghe, Peng Enhong, et al. Combined modulation of incident laser light by multiple surface scratches and their effects on the laser damage properties of KH2PO4 crystal[J]. Optics Express, 2020, 28(6): 8764-8782. doi: 10.1364/OE.388741
    [10] 陈明君, 姜伟, 庞启龙, 等. KDP晶体微纳米加工表层缺陷对其激光损伤阈值的影响[J]. 强激光与粒子束, 2010, 22(1):159-164 doi: 10.3788/HPLPB20102201.0159

    Chen Mingjun, Jiang Wei, Pang Qilong, et al. Simulation of micro—nano processing induced surface defects influencing KDP laser damage threshold[J]. High Power Laser and Particle Beams, 2010, 22(1): 159-164 doi: 10.3788/HPLPB20102201.0159
    [11] Gao Wei, Ji Jianwei, Wang Chao, et al. Mitigation of subsurface damage in potassium dihydrogen phosphate (KDP) crystals with a novel abrasive-free jet process[J]. Optical Materials Express, 2018, 8(9): 2625-2635. doi: 10.1364/OME.8.002625
    [12] Yang Hao, Cheng Jian, Chen Mingjun, et al. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling[J]. Optics Express, 2017, 25(15): 18332-18345. doi: 10.1364/OE.25.018332
    [13] Liu Zhichao, Geng Feng, Li Yaguo, et al. Study of morphological feature and mechanism of potassium dihydrogen phosphate surface damage under a 351 nm nanosecond laser[J]. Applied Optics, 2018, 57(35): 10334-10341. doi: 10.1364/AO.57.010334
    [14] Wang Shengfei, Wang Jian, Xu Qiao, et al. Influences of surface defects on the laser-induced damage performances of KDP crystal[J]. Applied Optics, 2018, 57(10): 2638-2646. doi: 10.1364/AO.57.002638
    [15] Han Wei, Zhou Lidan, Xiang Yong, et al. Characteristics of laser-induced surface and bulk damage of large-aperture deuterated potassium dihydrogen phosphate at 351 nm[J]. Chinese Physics Letters, 2016, 33: 027803. doi: 10.1088/0256-307X/33/2/027803
    [16] Yang Hao, Cheng Jian, Liu Zhichao, et al. Dynamic behavior modeling of laser-induced damage initiated by surface defects on KDP crystals under nanosecond laser irradiation[J]. Scientific Reports, 2020, 10: 500. doi: 10.1038/s41598-019-57300-2
    [17] Papernov S, Schmid A W. Laser-induced surface damage of optical materials: absorption sources, initiation, growth, and mitigation[C]//Proceedings of SPIE 7132, Laser-Induced Damage in Optical Materials: 2008. 2008: 71321J.
    [18] Wang Shengfei, Wang Jian, Lei Xiangyang, et al. Investigation of the laser-induced surface damage of KDP crystal by explosion simulation[J]. Optics Express, 2019, 27(11): 15142-15158. doi: 10.1364/OE.27.015142
    [19] 赵元安, 胡国行, 刘晓凤, 等. 激光预处理技术及其应用[J]. 光学 精密工程, 2016, 24(12):2938-2947 doi: 10.3788/OPE.20162412.2938

    Zhao Yuanan, Hu Guohang, Liu Xiaofeng, et al. Laser conditioning technology and its applications[J]. Optics and Precision Engineering, 2016, 24(12): 2938-2947 doi: 10.3788/OPE.20162412.2938
    [20] Li Ting, Zhao Yuanan, Lian Yafei, et al. Optimizing sub-nanosecond laser conditioning of DKDP crystals by varying the temporal shape of the pulse[J]. Optics Express, 2021, 29(22): 35993-36004. doi: 10.1364/OE.441918
    [21] 刘志超, 许乔, 雷向阳, 等. 大口径氘化磷酸二氢钾晶体离线亚纳秒激光预处理技术[J]. 物理学报, 2021, 70:074208 doi: 10.7498/aps.70.20201524

    Liu Zhichao, Xu Qiao, Lei Xiangyang, et al. Off-line sub-nanosecond laser conditioning on large aperture deuterated potassium dihydrogen phosphate crystal[J]. Acta Physica Sinica, 2021, 70: 074208 doi: 10.7498/aps.70.20201524
    [22] Sun Wei, Qi Hongji, Fang Zhou, et al. 1064 nm nanosecond laser induced concentric rings and periodic ripples structures at the exit surface of fused silica[J]. Applied Surface Science, 2014, 309: 79-84. doi: 10.1016/j.apsusc.2014.04.179
    [23] Chambonneau M, Rullier J L, Grua P, et al. Wavelength dependence of the mechanisms governing the formation of nanosecond laser-induced damage in fused silica[J]. Optics Express, 2018, 26(17): 21819-21830. doi: 10.1364/OE.26.021819
    [24] 胡国行. KDP/DKDP晶体和熔石英激光损伤及抑制技术研究[D]. 上海: 中国科学院研究生院, 2011: 48-76

    Hu Guoxing. Laser induced damage and suppression techniques for KDP/DKDP crystal and fused silica [D]. Beijing: Chinese Academy of Sciences, 2011
    [25] Carr C W, Feit M D, Johnson M A, et al. Complex morphology of laser-induced bulk damage in K2H(2-x)DxPO4 crystals[J]. Applied Physics Letters, 2006, 89: 131901. doi: 10.1063/1.2345254
    [26] Wang Ke, Ma Bin, Han Jiaqi, et al. Morphological and damage growth characteristics of shell-type damage of fused silica optics induced by ultraviolet laser pulses[J]. Applied Optics, 2019, 58(32): 8882-8888. doi: 10.1364/AO.58.008882
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  502
  • HTML全文浏览量:  213
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-21
  • 修回日期:  2023-03-24
  • 录用日期:  2023-03-21
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-06-15

目录

    /

    返回文章
    返回