留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型光电系统强电磁脉冲耦合分析与加固方法

刘文聪 梁圆龙 黄贤俊 徐延林 姚理想 文奎 田涛 刘培国

刘文聪, 梁圆龙, 黄贤俊, 等. 典型光电系统强电磁脉冲耦合分析与加固方法[J]. 强激光与粒子束, 2024, 36: 043010. doi: 10.11884/HPLPB202436.230321
引用本文: 刘文聪, 梁圆龙, 黄贤俊, 等. 典型光电系统强电磁脉冲耦合分析与加固方法[J]. 强激光与粒子束, 2024, 36: 043010. doi: 10.11884/HPLPB202436.230321
Liu Wencong, Liang Yuanlong, Huang Xianjun, et al. Coupling analysis and reinforcement method of high electromagnetic pulse in typical optoelectronic systems[J]. High Power Laser and Particle Beams, 2024, 36: 043010. doi: 10.11884/HPLPB202436.230321
Citation: Liu Wencong, Liang Yuanlong, Huang Xianjun, et al. Coupling analysis and reinforcement method of high electromagnetic pulse in typical optoelectronic systems[J]. High Power Laser and Particle Beams, 2024, 36: 043010. doi: 10.11884/HPLPB202436.230321

典型光电系统强电磁脉冲耦合分析与加固方法

doi: 10.11884/HPLPB202436.230321
基金项目: 湖湘英才项目(2020RC3028);湖南省自然科学基金优秀青年项目(2022JJ20045)
详细信息
    作者简介:

    刘文聪,wencong96@sina.com

    通讯作者:

    黄贤俊,huangxianjun@nudt.edu.cn

  • 中图分类号: O441.4

Coupling analysis and reinforcement method of high electromagnetic pulse in typical optoelectronic systems

  • 摘要: 随着电磁环境的日益复杂,电子设备面临的电磁威胁愈加严峻。光电系统作为高灵敏集成化电子设备,强电磁脉冲能量耦合进入系统内部,影响防护能力本就薄弱的光电系统的正常运行。为明晰典型光电系统强电磁耦合过程,通过仿真分析不同强电磁辐照条件下筒型、侧窗型和多窗口型三种典型光电系统的强电磁耦合情况,提取了光电系统强电磁耦合特征及其制约因素,验证了光电系统进行强电磁防护加固的必要性和紧迫性。为解决光电系统强电磁防护能力薄弱的问题,通过仿真分析,验证了透明电磁防护窗口的强电磁加固效能;开展了基于支撑台阶与导电侧壁的电磁缝隙防护加固方法研究,分析了透明防护窗口缝隙耦合泄露的关键安装结构参数,提出了一种非电接触式装配缝隙强电磁防护加固方法。经测试,当缝隙防护结构长度为6 mm时,在0.2~4 GHz频率范围光电系统平均强电磁防护效能提升4.51 dB。研究结果为光电系统强电磁防护能力提升提供了理论指导和具体解决方案。
  • 图  1  筒型光电系统结构尺寸和辐照角度示意图

    Figure  1.  Structure size diagram and irradiation angle diagram of tube optoelectronic system

    图  2  筒型光电系统电磁耦合特性

    Figure  2.  High-power electromagnetic coupling characteristics of straight tube optoelectronic system

    图  3  侧窗型光电系统应用场景、结构尺寸和辐照角度示意图

    Figure  3.  Application scenario, structure size and irradiation angle diagram of lateral window type optoelectronic system

    图  4  侧窗型结构不同入射角度电场检测值

    Figure  4.  Electric field detection values of side window structure at different incident angles

    图  5  侧窗型结构垂直极化与水平极化辐照下的强电磁耦合效应

    Figure  5.  High-power microwave coupling effect of side window structure under vertical and horizontal polarization irradiation

    图  6  多窗口型光电系统

    Figure  6.  Structure size diagram and irradiation angle diagram of multi-window optoelectronic system

    图  7  多窗口型光电系统电磁耦合特性

    Figure  7.  High-power electromagnetic coupling characteristics of multi-window optoelectronic system

    图  8  装配缝隙结构示意图及三种典型光电系统加装透明防护光窗后理想条件与存在装配缝隙两种情况强电磁防护效能提升情况

    Figure  8.  Schematic diagram of assembly gap structure and coupling path, improvement of ΔSE in the optoelectronic system under ideal conditions and with assembly gaps after installing a transparent protective light window

    图  9  透明防护光窗与设备壳体间的三个主要参数对系统强电磁防护效能的影响

    Figure  9.  Influence of three main parameters between the transparent protection window and the equipment shell on the high-power electromagnetic protection efficiency of the system

    图  10  设置缝隙防护加固结构示意图和防护效能提升情况

    Figure  10.  Structural schematic diagram and protection efficiency improvement after setting the gap protection reinforcement structure

    表  1  三种典型光电系统的强电磁耦合特性

    Table  1.   High-power microwave coupling characteristics of three typical optoelectronic systems

    type of optoelectronic
    system
    frequency/GHz resonance maximum coupling
    irradiation angle
    irradiation angle
    sensitivity ranking
    polarization
    sensitivity ranking
    maximum coupling
    E/(V·m−1)
    tube 2~10 90° high low 70000
    side window 0.8~10 90° middle high 58556
    multi window 0.9~10 60° low low 33601
    下载: 导出CSV

    表  2  三种典型光电系统加装透明防护窗口理想条件与存在装配缝隙两种情况强电磁防护效能

    Table  2.   Three typical optoelectronic systems with transparent protective windows ideal conditions and high-power microwave protection effectiveness with assembly gaps

    type of optoelectronic
    system
    forms an effective
    electrical connection/dB
    with assembly gaps/dB
    (a=1 mm, h=1.5 mm, b=4 mm)
    assembly gaps
    coupling effect
    tube 26.07 17.79 low
    side window 21.78 15.73 middle
    multi window 20.95 8.01 high
    下载: 导出CSV
  • [1] 刘培国, 刘晨曦, 谭剑锋, 等. 强电磁防护技术研究进展[J]. 中国舰船研究, 2015, 10(2):2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002

    Liu Peiguo, Liu Chenxi, Tan Jianfeng, et al. Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 2015, 10(2): 2-6 doi: 10.3969/j.issn.1673-3185.2015.02.002
    [2] 刘培国, 刘翰青, 王轲. 石墨烯材料在舰船强电磁防护技术中的应用[J]. 中国舰船研究, 2020, 15(4):1-8

    Liu Peiguo, Liu Hanqing, Wang Ke. Application of graphene in strong electromagnetic protection technology for ships[J]. Chinese Journal of Ship Research, 2020, 15(4): 1-8
    [3] 龚芳海, 李刚. 外军预警装备电子防护关键技术与运用研究[J]. 现代雷达, 2021, 43(7):54-62

    Gong Fanghai, Li Gang. A study on key technologies and application of electronic protection of foreign military early warning equipment[J]. Modern Radar, 2021, 43(7): 54-62
    [4] 徐哲, 黄珏. 舰船电子信息装备强电磁脉冲防护技术发展[J]. 舰船电子对抗, 2021, 44(4):35-38,93

    Xu Zhe, Huang Jue. Protection technology development of ship electronic information equipment to strong electromagnetic pulse[J]. Shipboard Electronic Countermeasure, 2021, 44(4): 35-38,93
    [5] 郭家祥, 谢润章, 王鹏, 等. 多维度红外光电探测器[J]. 红外与毫米波学报, 2022, 41(1):40-60

    Guo Jiaxiang, Xie Runzhang, Wang Peng, et al. Infrared photodetectors for multidimensional optical information acquisition[J]. Journal of Infrared and Millimeter Waves, 2022, 41(1): 40-60
    [6] 王永胜, 李伟, 郭文卿. 强电磁环境下无人机的电磁防护技术[J]. 安全与电磁兼容, 2020(5):95-99

    Wang Yongsheng, Li Wei, Guo Wenqing. Protection technology of UAV in strong electromagnetic environment[J]. Safety & EMC, 2020(5): 95-99
    [7] 谭志良, 李亚南, 宋培姣. 射频前端强电磁脉冲防护研究进展[J]. 北京理工大学学报, 2020, 40(3):231-242

    Tan Zhiliang, Li Yanan, Song Peijiao. Relevant research on electromagnetic pulse protection of RF front-end[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 231-242
    [8] 牛佳佳, 刘铭, 邢伟荣, 等. 基于低维材料的光电探测器的发展[J]. 红外, 2022, 43(3):8-15,21

    Niu Jiajia, Liu Ming, Xing Weirong, et al. Development of photoelectric detectors based on low-dimensional materials[J]. Infrared, 2022, 43(3): 8-15,21
    [9] 林江川, 陈自东, 陈小群, 等. 高功率微波作用下光电转换器的抗干扰特性分析[J]. 强激光与粒子束, 2018, 30:013002 doi: 10.11884/HPLPB201830.170158

    Lin Jiangchuan, Chen Zidong, Chen Xiaoqun, et al. Analysis of anti-interference effects for fiber converter under high power microwave radiation[J]. High Power Laser and Particle Beams, 2018, 30: 013002 doi: 10.11884/HPLPB201830.170158
    [10] 吴平, 姜云升, 徐志谦, 等. CCD成像设备在强电磁脉冲环境下的效应实验研究[J]. 光学学报, 2019, 39:0611002 doi: 10.3788/AOS201939.0611002

    Wu Ping, Jiang Yunsheng, Xu Zhiqian, et al. Experimental research on CCD imaging equipment in intensive electromagnetic-pulse environment[J]. Acta Optica Sinica, 2019, 39: 0611002 doi: 10.3788/AOS201939.0611002
    [11] 梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68,103

    Liang Yuanlong, Huang Xianjun, Yao Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC, 2021(2): 61-68,103
    [12] Lu Zhengang, Ma Limin, Tan Jiubin, et al. Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing[J]. 2D Materials, 2017, 4: 025021. doi: 10.1088/2053-1583/aa57f8
    [13] Wang Heyan, Ji Chengang, Zhang Cheng, et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11782-11791.
    [14] Yuan Changwei, Huang Jinhua, Dong Yuxuan, et al. Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave Fabry–Pérot interference and optical antireflection[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26659-26669.
    [15] Xie Qindong, Yan Zhiyang, Wang Shengyan, et al. Transparent, flexible, and stable polyethersulfone/copper-nanowires/polyethylene terephthalate sandwich-structured films for high-performance electromagnetic interference shielding[J]. Advanced Engineering Materials, 2021, 23: 2100283. doi: 10.1002/adem.202100283
    [16] Liang Yuanlong, Huang Xianjun, Pan Jisheng, et al. Shorted micro-waveguide array for high optical transparency and superior electromagnetic shielding in ultra-wideband frequency spectrum[J]. Advanced Materials Technologies, 2023, 8: 2201532. doi: 10.1002/admt.202201532
    [17] 陈卓, 杨晓宁, 杨勇. 卫星星敏感器结构强电磁耦合效应仿真及实验研究[J]. 航天器环境工程, 2020, 37(2):131-136

    Chen Zhuo, Yang Xiaoning, Yang Yong. Effects of strong electromagnetic coupling on the structure of satellite star tracker[J]. Spacecraft Environment Engineering, 2020, 37(2): 131-136
    [18] 吴永康, 翟正一, 毛晓楠, 等. 星敏感器遮光罩的力学分析及优化设计[J]. 环境技术, 2023, 41(5):6-10

    Wu Yongkang, Zhai Zhengyi, Mao Xiaonan, et al. Mechanical analysis and optimization of a star tracker baffle[J]. Environmental Technology, 2023, 41(5): 6-10
    [19] 余英, 侯明善, 殷春武. 防空导弹红外成像跟踪探测范围研究[J]. 计算机仿真, 2016, 33(4):130-135,423

    Yu Ying, Hou Mingshan, Yin Chunwu. Research on antiaircraft missile's infrared imaging tracking and detection range[J]. Computer Simulation, 2016, 33(4): 130-135,423
    [20] 余英, 侯明善, 张斯哲, 等. 侧窗探测自适应制导研究[J]. 西北工业大学学报, 2016, 34(2):287-293

    Yu Ying, Hou Mingshan, Zhang Sizhe, et al. A new adaptive proportional navigation based on side window detection[J]. Journal of Northwestern Polytechnical University, 2016, 34(2): 287-293
    [21] 孟奇, 马丽芳, 张航. 气动加热影响下弹载红外侧窗成像方法研究[J]. 指挥控制与仿真, 2022, 44(6):96-101

    Meng Qi, Ma Lifang, Zhang Hang. Research on infrared lateral window imaging method under the influence of aerodynamic heating[J]. Command Control & Simulation, 2022, 44(6): 96-101
    [22] Pozar D M. Microwave engineering[M]. 3rd ed. Hoboken: Wiley, 2005.
    [23] Liang Yuanlong, Huang Xianjun, Wen Kui, et al. Metal mesh-based infrared transparent EMI shielding window with balanced shielding properties over a wide frequency spectrum[J]. Applied Sciences, 2023, 13: 4846. doi: 10.3390/app13084846
    [24] 刘恩博, 王丹丹, 陈珂, 等. 带缝隙腔体电磁谐振特性的仿真分析[J]. 中国科技论文, 2016, 11(16):1808-1812 doi: 10.3969/j.issn.2095-2783.2016.16.003

    Liu Enbo, Wang Dandan, Chen Ke, et al. Simulation analysis on electromagnetic resonance characteristics of cavity with slots[J]. China Sciencepaper, 2016, 11(16): 1808-1812 doi: 10.3969/j.issn.2095-2783.2016.16.003
    [25] 章炜, 姚建吉, 詹科, 等. 导电胶研究进展[J]. 科技导报, 2018, 36(10):56-65

    Zhang Wei, Yao Jianji, Zhan Ke, et al. Research progress of conductive adhesives[J]. Science & Technology Review, 2018, 36(10): 56-65
    [26] Robinson M P, Benson T M, Christopoulos C, et al. Analytical formulation for the shielding effectiveness of enclosures with apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3): 240-248. doi: 10.1109/15.709422
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  45
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2024-01-04
  • 录用日期:  2024-01-04
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回