留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国聚变工程试验堆360°全堆建模与初步核分析

伍秋染 杜华 郑俞 卢棚 刘松林

伍秋染, 杜华, 郑俞, 等. 中国聚变工程试验堆360°全堆建模与初步核分析[J]. 强激光与粒子束, 2022, 34: 026018. doi: 10.11884/HPLPB202234.210364
引用本文: 伍秋染, 杜华, 郑俞, 等. 中国聚变工程试验堆360°全堆建模与初步核分析[J]. 强激光与粒子束, 2022, 34: 026018. doi: 10.11884/HPLPB202234.210364
Wu Qiuran, Du Hua, Zheng Yu, et al. Neutronics modeling of 360° China Fusion Engineering Test Reactor and preliminary nuclear analysis[J]. High Power Laser and Particle Beams, 2022, 34: 026018. doi: 10.11884/HPLPB202234.210364
Citation: Wu Qiuran, Du Hua, Zheng Yu, et al. Neutronics modeling of 360° China Fusion Engineering Test Reactor and preliminary nuclear analysis[J]. High Power Laser and Particle Beams, 2022, 34: 026018. doi: 10.11884/HPLPB202234.210364

中国聚变工程试验堆360°全堆建模与初步核分析

doi: 10.11884/HPLPB202234.210364
基金项目: 国家磁约束聚变能专项(2019YFE03110000, 2019YFE03110002);国家自然科学基金青年项目(12005145)
详细信息
    作者简介:

    伍秋染,qiuran.wu@ipp.ac.cn

    通讯作者:

    卢 棚,peng.lu@ipp.ac.cn

  • 中图分类号: TL61;TL64

Neutronics modeling of 360° China Fusion Engineering Test Reactor and preliminary nuclear analysis

  • 摘要: 基于自动化建模软件平台cosVMPT的发展,建立了包含厂房结构的中国聚变工程试验堆(CFETR) 360°全堆模型,主要结构包括中心螺线管线圈、真空室、纵场线圈、极向场线圈、内外冷屏、杜瓦,以及精细结构的水冷包层和偏滤器。空间布置上包括16个上/下窗口和6个中窗口,2个斜窗口作为NBI束通道,其余窗口内设为屏蔽块。引入“on-the-fly”(OTF)全局减方差方法以获得可靠的中子、光子通量,结果显示其在厂房内的分布不对称。验证了cosVMPT平台和OTF方法的可靠性,并与扇段模型所获得的结果进行对比,进一步确认能够通过扇段模型来简化建模计算过程的使用范围。
  • 图  1  CFETR 几何模型

    Figure  1.  Model of CFETR geometry

    图  2  建模流程

    Figure  2.  Process of modelling

    图  3  模型预处

    Figure  3.  Pre-processing of modelling

    图  4  cosVMPT 平台界面

    Figure  4.  Platform of cosVMPT

    图  5  CFETR 360°全堆中子学模型

    Figure  5.  Neutronics model of 360° CFETR

    图  6  原始CAD模型与中子学模型体积相对偏差

    Figure  6.  Relative difference between volume of CAD model and neutronics model

    图  7  CFETR 主机三维中子通量分布

    Figure  7.  Neutron flux distribution for 3D CFETR main machine

    图  8  中子、光子通量及误差分布

    Figure  8.  Neutron/photon flux and relative error distribution

    图  9  含 NBI 系统的 112.5° CFETR 中子通量分布

    Figure  9.  Neutron flux distribution for 112.5° model with 2 sets of NBI systems

    表  1  主要部件的中子/光子通量及误差

    Table  1.   Neutron/photon flux of main components and their relative error

    componentposition
    (x, y, z)/cm
    neutron flux/
    (cm−2·s−1)
    neutron flux
    relative error/%
    photon flux/
    (cm−2·s−1)
    photon flux
    relative error/%
    blanket (980.0, −14.5, 15.0) 3.19E+14 0.15 1.19E+14 0.28
    divertor (580.0, −14.5, −465.0) 1.75E+14 0.16 7.80E+13 0.28
    vacuum vessel (1 220.0, −14.5, 15.0) 3.65E+12 0.54 1.91E+12 0.63
    center solenoid coil (140.0, −14.5, 15.0) 9.58E+03 9.28 1.19E+04 4.01
    poloidal field coil (1 500.0, −14.5, 295.0) 4.28E+08 6.67 1.85E+08 9.10
    toroidal field coil (1 340.0, 219.5, 15.0) 3.92E+08 2.75 1.16E+08 3.03
    cryostat (1 860.0, −14.5, 15.0) 1.95E+08 1.35 5.30E+07 3.44
    bio-shielding (in) (2 100.0, −14.5, 15.0) 3.11E+05 6.66 3.55E+05 7.46
    bio-shielding (out) (5 217.5, −14.5, 15.0) 1.28E+05 7.43 2.64E+05 3.26
    下载: 导出CSV
  • [1] Juarez R, Pedroche G, Loughlin M J, et al. A full and heterogeneous model of the ITER tokamak for comprehensive nuclear analyses[J]. Nature Energy, 2021, 6(2): 150-157. doi: 10.1038/s41560-020-00753-x
    [2] Zhuang Ge, Li Guoqiang, Li Jiangang, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59: 112010. doi: 10.1088/1741-4326/ab0e27
    [3] Du Hua, Wu Qiuran, Lu Peng, et al. Development of cosVMPT and application of creating 3D neutronics model for 360-degree CFETR[J]. Journal of Fusion Energy, 2021, 40: 2. doi: 10.1007/s10894-021-00299-0
    [4] 杜华. 面向MC的辅助建模技术发展与应用研究[D]. 合肥: 中国科学技术大学, 2021: 83-87

    Du Hua. Research on the development and application of computer-aided modeling technology for MC codes[D]. Hefei: University of Science and Technology of China, 2021: 83-87
    [5] Du Hua, Luo Yuetong, Han Chengcun, et al. Development of an assistant program for CAD-to-cosRMC modelling[J]. Fusion Engineering and Design, 2020, 157: 111662. doi: 10.1016/j.fusengdes.2020.111662
    [6] Zheng Yu, Qiu Yuefeng, Lu Peng, et al. An improved on-the-fly global variance reduction technique by automatically updating weight window values for Monte Carlo shielding calculation[J]. Fusion Engineering and Design, 2019, 147: 111238. doi: 10.1016/j.fusengdes.2019.06.011
    [7] Zheng Yu, Qiu Yuefeng, Lu Peng, et al. Verification of the on-the-fly global variance reduction technique on Monte Carlo global coupled neutron photon shielding calculations[J]. Fusion Engineering and Design, 2021, 171: 112565. doi: 10.1016/j.fusengdes.2021.112565
    [8] 郑俞. 蒙特卡罗减方差加速方法研究与应用[D]. 合肥: 中国科学技术大学, 2021: 70-73

    Zheng Yu. Research and application of Monte Carlo variance reduction method[D]. Hefei: University of Science and Technology of China, 2021: 70-73
    [9] Wu Qiuran, Lu Peng, Zheng Yu, et al. Neutronic analyses of upper port ECRH antenna system for CFETR[J]. Fusion Engineering and Design, 2021, 162: 112078. doi: 10.1016/j.fusengdes.2020.112078
    [10] 伍秋染, 卢棚, 郑俞, 等. CFETR离子回旋加热天线中子学分析[J]. 核技术, 2020, 43:110603. (Wu Qiuran, Lu Peng, Zheng Yu, et al. Neutronic analyses of ICRF antenna system for CFETR[J]. Nuclear Techniques, 2020, 43: 110603 doi: 10.11889/j.0253-3219.2020.hjs.43.110603
    [11] 刘松林. Task 12 CFETR辐射场分析[R]. 黄山: CFETR集成工程设计年会暨聚变堆设计研讨会, 2019

    Liu Songlin. Task 12 The analyses for radiation field of CFETRR]. Huangshan: Annual Conference of CFETR Integrated Engineering Design and the Seminar of Fusion Reactor Design, 2019
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  302
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-12-17
  • 网络出版日期:  2021-12-30
  • 刊出日期:  2022-01-11

目录

    /

    返回文章
    返回