Neutronics modeling of 360° China Fusion Engineering Test Reactor and preliminary nuclear analysis
-
摘要: 基于自动化建模软件平台cosVMPT的发展,建立了包含厂房结构的中国聚变工程试验堆(CFETR) 360°全堆模型,主要结构包括中心螺线管线圈、真空室、纵场线圈、极向场线圈、内外冷屏、杜瓦,以及精细结构的水冷包层和偏滤器。空间布置上包括16个上/下窗口和6个中窗口,2个斜窗口作为NBI束通道,其余窗口内设为屏蔽块。引入“on-the-fly”(OTF)全局减方差方法以获得可靠的中子、光子通量,结果显示其在厂房内的分布不对称。验证了cosVMPT平台和OTF方法的可靠性,并与扇段模型所获得的结果进行对比,进一步确认能够通过扇段模型来简化建模计算过程的使用范围。Abstract: With the support of the modelling conversion platform cosVMPT, the 360° model is needed to solve this inaccuracy from asymmetry. The detailed structure of all main components for China Fusion Engineering Test Reactor (CFETR) has been developed. The whole model consists of Central Solenoid (CS), Vacuum Vessel (VV), Port (16 upper/lower ports, 6 equatorial ports in which 2 oblique are ones used for NBI beam channel), Thermal Shielding (VVTS & CTS), Toroidal and Poloidal Field Coils (TFC & PFC), Cryostat and the House Building. The water-cooled ceramic breeder (WCCB) blanket and water cooled divertor with full detailed structure is inserted, while spare ports are filled with shielding material. The preliminary calculation has been performed by MCNP code combining with the advanced “on-the-fly” GVR method, which was introduced to generate the global weight window to accelerate the neutron transport, and the reliable neutron and photon flux map was obtained. This work realizes the application of cosVMPT platform and OTF method in complicated fusion reactor, and it validates their robustness. In addition, the results of 360° model has been compared to that of sector model, to verify the validity and applicability of using sector model to simplify the modelling and calculation.
-
Key words:
- CFETR /
- 360° model /
- cosVMPT /
- on-the-fly method /
- neutronics
-
表 1 主要部件的中子/光子通量及误差
Table 1. Neutron/photon flux of main components and their relative error
component position
(x, y, z)/cmneutron flux/
(cm−2·s−1)neutron flux
relative error/%photon flux/
(cm−2·s−1)photon flux
relative error/%blanket (980.0, −14.5, 15.0) 3.19E+14 0.15 1.19E+14 0.28 divertor (580.0, −14.5, −465.0) 1.75E+14 0.16 7.80E+13 0.28 vacuum vessel (1 220.0, −14.5, 15.0) 3.65E+12 0.54 1.91E+12 0.63 center solenoid coil (140.0, −14.5, 15.0) 9.58E+03 9.28 1.19E+04 4.01 poloidal field coil (1 500.0, −14.5, 295.0) 4.28E+08 6.67 1.85E+08 9.10 toroidal field coil (1 340.0, 219.5, 15.0) 3.92E+08 2.75 1.16E+08 3.03 cryostat (1 860.0, −14.5, 15.0) 1.95E+08 1.35 5.30E+07 3.44 bio-shielding (in) (2 100.0, −14.5, 15.0) 3.11E+05 6.66 3.55E+05 7.46 bio-shielding (out) (5 217.5, −14.5, 15.0) 1.28E+05 7.43 2.64E+05 3.26 -
[1] Juarez R, Pedroche G, Loughlin M J, et al. A full and heterogeneous model of the ITER tokamak for comprehensive nuclear analyses[J]. Nature Energy, 2021, 6(2): 150-157. doi: 10.1038/s41560-020-00753-x [2] Zhuang Ge, Li Guoqiang, Li Jiangang, et al. Progress of the CFETR design[J]. Nuclear Fusion, 2019, 59: 112010. doi: 10.1088/1741-4326/ab0e27 [3] Du Hua, Wu Qiuran, Lu Peng, et al. Development of cosVMPT and application of creating 3D neutronics model for 360-degree CFETR[J]. Journal of Fusion Energy, 2021, 40: 2. doi: 10.1007/s10894-021-00299-0 [4] 杜华. 面向MC的辅助建模技术发展与应用研究[D]. 合肥: 中国科学技术大学, 2021: 83-87Du Hua. Research on the development and application of computer-aided modeling technology for MC codes[D]. Hefei: University of Science and Technology of China, 2021: 83-87 [5] Du Hua, Luo Yuetong, Han Chengcun, et al. Development of an assistant program for CAD-to-cosRMC modelling[J]. Fusion Engineering and Design, 2020, 157: 111662. doi: 10.1016/j.fusengdes.2020.111662 [6] Zheng Yu, Qiu Yuefeng, Lu Peng, et al. An improved on-the-fly global variance reduction technique by automatically updating weight window values for Monte Carlo shielding calculation[J]. Fusion Engineering and Design, 2019, 147: 111238. doi: 10.1016/j.fusengdes.2019.06.011 [7] Zheng Yu, Qiu Yuefeng, Lu Peng, et al. Verification of the on-the-fly global variance reduction technique on Monte Carlo global coupled neutron photon shielding calculations[J]. Fusion Engineering and Design, 2021, 171: 112565. doi: 10.1016/j.fusengdes.2021.112565 [8] 郑俞. 蒙特卡罗减方差加速方法研究与应用[D]. 合肥: 中国科学技术大学, 2021: 70-73Zheng Yu. Research and application of Monte Carlo variance reduction method[D]. Hefei: University of Science and Technology of China, 2021: 70-73 [9] Wu Qiuran, Lu Peng, Zheng Yu, et al. Neutronic analyses of upper port ECRH antenna system for CFETR[J]. Fusion Engineering and Design, 2021, 162: 112078. doi: 10.1016/j.fusengdes.2020.112078 [10] 伍秋染, 卢棚, 郑俞, 等. CFETR离子回旋加热天线中子学分析[J]. 核技术, 2020, 43:110603. (Wu Qiuran, Lu Peng, Zheng Yu, et al. Neutronic analyses of ICRF antenna system for CFETR[J]. Nuclear Techniques, 2020, 43: 110603 doi: 10.11889/j.0253-3219.2020.hjs.43.110603 [11] 刘松林. Task 12 CFETR辐射场分析[R]. 黄山: CFETR集成工程设计年会暨聚变堆设计研讨会, 2019Liu Songlin. Task 12 The analyses for radiation field of CFETRR]. Huangshan: Annual Conference of CFETR Integrated Engineering Design and the Seminar of Fusion Reactor Design, 2019